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Abstract Stenotopic specialization to a fragmented

habitat promotes the evolution of genetic structure. It

is not yet clear whether small-scale population struc-

ture generally translates into large-scale intraspecific

divergence. In the present survey of mitochondrial

genetic structure in the Lake Tanganyika endemic

Altolamprologus (Teleostei, Cichlidae), a rock-dwell-

ing cichlid genus comprising A. compressiceps and A.

calvus, habitat-induced population fragmentation con-

trasts with weak phylogeographic structure and recent

divergence among genetic clades. Low rates of

dispersal, perhaps along gastropod shell beds that

connect patches of rocky habitat, and periodic sec-

ondary contact during lake level fluctuations are

apparently sufficient to maintain genetic connectivity

within each of the two Altolamprologus species. The

picture of genetic cohesion was interrupted by a single

highly divergent haplotype clade in A. compressiceps

restricted to the northern part of the lake. Comparisons

between mitochondrial and nuclear phylogenetic

reconstructions suggested that the divergent mito-

chondrial clade originated from ancient interspecific

introgression. Finally, ‘isolation-with-migration’

models indicated that divergence between the two

Altolamprologus species was recent (67–142 KYA)

and proceeded with little if any gene flow. As in other

rock-dwelling cichlids, recent population expansions

Electronic supplementary material The online version of
this article (doi:10.1007/s10750-016-2896-2) contains supple-
mentary material, which is available to authorized users.

Guest editors: S. Koblmüller, R. C. Albertson, M. J. Genner,

K. M. Sefc & T. Takahashi / Advances in Cichlid Research II:

Behavior, Ecology and Evolutionary Biology

S. Koblmüller (&) � M. Van Steenberge �

C. Sturmbauer � K. M. Sefc

Institute of Zoology, University of Graz, Universitätsplatz
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were inferred in both Altolamprologus species, which

may be connected with drastic lake level fluctuations.

Keywords Cichlidae � Mitochondrial replacement �

Phylogeography � Lake level fluctuations �

Lamprologini � Hybridization

Introduction

The genetic structure within a species is often

predicted by components of the species’ ecology and

life history traits (Wiens & Donoghue, 2004). For

instance, generalist species and species with good

dispersal abilities tend to show little phylogeographic

structure (e.g. Cadena et al., 2011; Koblmüller et al.,

2012; Diedericks & Daniels, 2014), whereas species

that are specialized to particular, fragmented habitats

or food sources are often divided into distinct popu-

lations and develop marked phylogeographic patterns

(e.g. Young et al., 1996; Row et al., 2010; Kajtoch

et al., 2014). This contrast is particularly evident when

the different species occur in the same region. In the

two East African lakes Malawi and Tanganyika,

stenotopic cichlid species inhabiting the discontinuous

rocky littoral consistently show remarkable genetic

population differentiation, even across very short

geographic distances (e.g. van Oppen et al., 1997;

Markert et al., 1999; Taylor et al., 2001; Rico &

Turner, 2002; Pereyra et al., 2004; Duftner et al., 2006;

Koblmüller et al., 2011; Sefc et al., 2007; Wagner &

McCune, 2009; Nevado et al., 2013; Van Steenberge

et al., 2015; Sefc et al., 2016). Differentiation is lower

and only occurs on a larger geographic scale in less

specialized species and species that inhabit the

intermediate habitat, i.e. the transition between rocky

and sandy habitat surrounding the rocky habitat

patches (Koblmüller et al., 2007a, 2009; Sefc et al.,

2007; Kotrschal et al., 2012). Finally, the sandy and

the open-water habitat contain virtually no barriers to

dispersal, and cichlid species specialized to these

habitats show little if any population genetic structure

at all (Shaw et al., 2000; Taylor & Verheyen, 2001;

Pereyra et al., 2004; Genner et al., 2008, 2010a;

Anseeuw et al., 2011; Koblmüller et al., 2015a).

The majority of studies addressing the genetic

structure of cichlid species in the two lakes did so by

sampling populations within a small portion of the

species’ entire distribution range (see references

above). It is not yet clear whether findings regarding

small-scale population structure can be extrapolated to

large-scale phylogeographic patterns. Significant

genetic differentiation can evolve among fragmented

populations within relatively short periods of time.

However, large-scale phylogeographic patterns have

been shown to be influenced by the long-term history

of the species, including range shifts and introgression

among differentiated lineages during secondary con-

tact in the course of lake level fluctuations (Verheyen

et al., 1996; Sturmbauer et al., 2001; Egger et al.,

2007; Nevado et al., 2009). Therefore, distinct pop-

ulation genetic structure may, but need not, go along

with a clear-cut phylogeographic pattern; and vice

versa, species with high levels of gene flow across the

geographical scale of previous population genetic

studies may still be genetically structured on a larger

scale.

Due to logistic and sometimes political reasons,

lake-wide sampling in Lakes Malawi and Tanganyika

can be difficult, and only few species have been

investigated throughout large parts of their distribu-

tion ranges. The stenotopic rock-dwelling genus

Tropheus from Lake Tanganyika is one example in

which both population genetic and lake-wide phylo-

geographic studies have been conducted. In this fish,

strong small-scale population differentiation contrasts

with evidence for ancient introgression among phylo-

genetically old lineages (Sturmbauer et al., 2005; Sefc

et al., 2007; Egger et al., 2007; Koblmüller et al., 2011;

Sefc et al., 2016). A similar picture—deep intraspeci-

fic divergences and past introgression among geo-

graphically distant populations—emerged in a

phylogeographic study of another rock-dwelling cich-

lid of Lake Tanganyika, the Neolamprologus bri-

chardi/pulcher complex (Duftner et al., 2007). In

contrast, two species that are less strictly restricted to

rocky habitat (Lamprologus callipterus and Neolam-

prologus fasciatus) exhibit clear phylogeographic
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structure but shallower intraspecific divergence (Ne-

vado et al., 2009), and a highly mobile benthopelagic

species (Boulengerochromis microlepis) shows no

phylogeographic structure on a lake-wide scale and

very shallow intraspecific divergence (Koblmüller

et al., 2015a). Similarly, in Lake Malawi, the pelagic

species Diplotaxodon limnothrissa shows no phylo-

geographic structure on a lake-wide scale (Shaw et al.,

2000).

Here, we investigate the phylogeographic structure

in two closely related species of the Lake Tanganyika

cichlid genus Altolamprologus, a member of the

‘ossified group’ within the tribe Lamprologini (Sti-

assny, 1997). The genus diverged from its sister group

[1 MYA (Sturmbauer et al., 2010) and includes only

two described species, Altolamprologus compressi-

ceps and A. calvus. A. compressiceps has a lake-wide

distribution, whereas A. calvus is restricted to the

southwestern part of Lake Tanganyika, where it occurs

in sympatry with A. compressiceps (Fig. 1; Konings,

1998; Van Steenberge et al., 2011). Both species

typically inhabit the shallow rocky habitat, but can

also be found down to a depth of 30–40 m (Konings,

1998; Muschick et al., 2012). In suitable habitat,

Altolamprologus spp. are common, but less abundant

than many other rock-dwelling cichlid species (Sturm-

bauer et al., 2008; Takeuchi et al., 2010). Both species

are characterized by deep and laterally compressed

bodies enabling them to enter narrow cracks and

shallow caves (Fig. 1). They predominately prey on

atyid shrimps, but also on other arthropods and fish fry

(Hori, 1991; Yuma & Kondo, 1997; Konings, 1998;

Muschick et al., 2012). In addition to the two

described species, a dwarf ecotype, Altolamprologus

sp. ‘‘shell’’, lives and breeds in mollusc shell beds at a

few locations in Burundi, Tanzania and Zambia. The

taxonomic status of this ecotype is uncertain. A

detailed morphological study of shell-breeding dwarf

Altolamprologus from Burundi concluded that this fish

is not a distinct species but merely a dwarf morph of A.

compressiceps (Gashagaza et al., 1995). While our

sampling of A. compressiceps and A. calvus covers

their entire respective distributions, only one individ-

ual of the shell-breeding ecotype could be analysed in

the present study, which certainly is not enough to

fully uncover its evolutionary history but gives a first

hint as to where it stands within the genus.

Like many other rock-dwelling cichlids, Altolam-

prologus spp. exhibit considerable geographic

variation in colour pattern (Kohda et al., 1996;

Konings, 1998), and comparisons among three popu-

lations in the very south of Lake Tanganyika detected

significant population genetic and morphometric dif-

ferentiation in A. compressiceps (Spreitzer et al.,

2012), a pattern potentially indicating pronounced

levels of lake-wide phylogeographic structuring. Fur-

thermore, if habitat preferences correlate with phylo-

geographic structure, we expect to see a similar

phylogeographic pattern in Altolamprologus as in the

rock-dwellers Tropheus spp. andN. pulcher/brichardi,

with ancient introgression among deeply divergent

genetic lineages (Sturmbauer et al., 2005; Duftner

et al., 2007; Egger et al., 2007). In this study, we use

mitochondrial and nuclear sequence data to uncover

the phylogeographic structure and demographic his-

tory of A. calvus and A. compressiceps, and their

phylogenetic relationships to other ‘ossified group’

lamprologines. In doing so and by comparing the

inferred pattern with those of other taxa, we test

whether the similar ecological and life history traits in

cichlid species from different tribes can predict the

degree of genetic structure attained over large geo-

graphic scales.

Materials and methods

Sample collection and DNA extraction

A total of 150 Altolamprologus samples (30 A. calvus,

119 A. compressiceps, 1 A. sp. ‘‘shell’’) from 41

localities around Lake Tanganyika were included in

this study (Fig. 1; Supplementary Table 1). The

majority of samples were collected during several

expeditions between 1992 and 2010 by snorkelling

and chasing individual fish into gill nets. Three

samples were obtained via the ornamental fish trade.

Whole genomic DNA was extracted from finclips or

muscle tissue preserved in 96% ethanol by means of a

Chelex protocol (Richlen & Barber, 2005) or by

applying a proteinase K digestion followed by a

standard ammonium acetate extraction protocol (Sam-

brook & Russell, 2001).

PCR amplification and sequencing

Phylogeographic inference was based on sequences of

the most variable part of the mitochondrial control
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region (358 bp in the aligned dataset) obtained

according to the protocols in Koblmüller et al.

(2011; PCR) and Duftner et al. (2005; Sanger

sequencing) and using primers L-Pro-F_Tropheus

(Koblmüller et al., 2011) and TDK-D (Lee et al.,

1995).

The phylogenetic position of Altolamprologus spp.

in relation to the other species of the ‘ossified group’ of

Lamprologini was investigated using comprehensive

mitochondrial and nuclear sequence datasets. The

Altolamprologus spp. samples included in these

mtDNA and nucDNA datasets were selected based

on their assignment to distinct lineages in the control

region data. The complete mitochondrial NADH

dehydrogenase subunit 2 gene (ND2; 1,047 bp) was

amplified and sequenced using the primers Met,

ND2.2A, Trp (Kocher et al., 1995) and ND2.T-R

(Duftner et al., 2005) in four A. calvus and nine A.

compressiceps samples. Furthermore, four nuclear

genes (ITS, 1,306 bp; LSU, 676 bp; RAG1 intron 2,

928 bp; RAG1 exon 3, 828 bp) were amplified and

sequenced for three A. calvus and eight A. compres-

siceps according to Nevado et al. (2009), using the

primers ITS_18D, ITS_28C, ITS_5.8C (ITS; Nevado

et al., 2009), LSU_F1, LSU_R1 (LSU; Sonnenberg

et al., 2007), KALIF1, CR1, CF1 and CR5 (RAG1

Fig. 1 ATypical representatives of A. calvus,A. compressiceps

and A. sp. ‘‘shell’’. Photographs courtesy of Wolfgang Gessl

(www.pisces.at). B Map of Lake Tanganyika with sampling

localities. Numbers in parentheses refer to sample sizes;

different colours indicate different species (red, A. calvus; blue,

A. compressiceps; green, A. sp. ‘‘shell’’). The three deepwater

basins are indicated by grey shading

38 Hydrobiologia (2017) 791:35–50
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intron 2 and RAG1 exon 3; Clabaut et al., 2005). DNA

fragments were purified with SephadexTM G-50

(Amersham Biosciences) and visualized on an ABI

3130xl capillary sequencer (Applied Biosystems).

Sequences were aligned by eye (protein coding

sequences) or using MUSCLE (Edgar, 2004) (for

non-coding sequences and rDNA) as implemented in

Mega 6.05 (Tamura et al., 2013). Our newly generated

sequence data were complemented with previously

published sequences of ‘ossified group’ lamprologines

and outgroup taxa (Duftner et al., 2005; Schelly et al.,

2006; Koblmüller et al., 2007b; Nevado et al., 2009),

downloaded from Genbank (Supplementary Table 2).

New sequences are deposited in GenBank (for

GenBank accession numbers, see Supplementary

Tables 1 and 2).

Phylogeographic and phylogenetic analysis

within Altolamprologus

Phylogenetic relationships among mitochondrial con-

trol region haplotypes were inferred by means of

Bayesian phylogenetic inference (BI), implemented in

MrBayes 3.2.1 (Ronquist et al., 2012). Posterior

probabilities were obtained from a Metropolis-cou-

pled Markov chain Monte Carlo simulation (2 inde-

pendent runs; 10 chains with 5 million generations

each; trees sampled every 1,000 generations; the first

25% of trees were discarded as burn-in) employing the

best substitution model suggested by the Bayesian

Information Criterion (BIC) in jModelTest 0.1

(Posada, 2008). Chain stationarity and run parameter

convergence were assessed in Tracer 1.6 (Rambaut

et al., 2013; all Effective Sample Size (ESS)[200).

The post-burn-in trees were summarized in a 50%

majority rule consensus tree. Furthermore, a haplotype

network was constructed based on statistical parsi-

mony using TCS 1.2 (Clement et al., 2000), with gaps

treated as 5th character. Haplotype (Hd) and nucleo-

tide diversities (p) were calculated in DnaSP 5.10

(Librado & Rozas, 2009).

Spatial patterns of genetic differentiation were

inferred and visualized by genetic landscape shape

interpolation analysis as implemented in Alleles in

Space 1.0 (AIS: Miller, 2005). The genetic landscape

analysis was based on a Delauny triangulation

connectivity network and residual genetic distances

derived from the linear regression of genetic versus

geographic distances (as recommended for data sets

with substantial variation in geographic distances

between sampling sites; Manni et al., 2004). Grid size

was set to 0.04 9 0.04 latitude and longitude degrees,

respectively, and a distance weighting parameter

a = 0.5 was used (for more details on the method

see Miller et al., 2006). Qualitatively similar results

were obtained with different grid sizes and a range of

distance weighting parameters (a = 0.1–2; not

shown).

Phylogenetic relationships of Altolamprologus

within the ‘ossified group’ of lamprologines

Phylogenetic analyses of the ND2 and concatenated

nuclear data employed BI as implemented in MrBayes

using non-ossified group lamprologines as outgroup

taxa (Julidochromis ornatus, Telmatochromis vittatus

and Variabilichromis moorii for the ND2 data;

Neolamprologus cunningtoni, N. modestus, N.

savoryi, N. tetracanthus and V. moorii for the nuclear

data). The most appropriate data partitioning schemes

and the best fitting molecular evolution models for BI

tree search were selected based on the BIC criterion in

PartitionFinder (Lanfear et al., 2012). Posterior prob-

abilities were obtained from a Metropolis-coupled

Markov chain Monte Carlo simulation (2 independent

runs; 10 chains with 5 million generations each for

both the ND2 and the concatenated nuclear dataset;

trees sampled every 1,000 generations; the first 25% of

trees were discarded as burn-in). Chain stationarity

and run parameter convergence were assessed in

Tracer 1.6 (Rambaut et al., 2013; all ESS[200). A

50% majority rule consensus tree was calculated from

all post-burn-in trees.

Species divergence and demographic history

The program IMa2 (Hey, 2010) was used to infer

divergence time and the level of gene flow between A.

compressiceps and A. calvus based on an isolation-

with-migration (IM) coalescent model (Hey & Niel-

sen, 2004, 2007). Isolation-with-migration models and

pure isolation models were each fit to datasets

including lake-wide samples or a subset of samples

from the area of sympatry. Each of these four analyses

was replicated twice with different random number

seeds and [10,000,000 steps (until ESS for each

estimated parameter were [200; Hey & Nielsen,

2004) and a burn-in of 100,000 steps under a finite-
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sites model (HKY; Hasegawa et al., 1985). Analyses

were considered to have converged upon the station-

ary distribution if independent runs yielded virtually

identical posterior distributions. The values with the

highest posterior probability were scored as best

estimates. Credibility intervals for each parameter

are represented by the 95% highest posterior density

(HPD) interval which is the shortest span that includes

95% of the probability density of a parameter.

Parameter estimates for divergence time, rate of gene

flow, as well as current and ancestral effective

population sizes were translated to absolute values

by employing a minimum and maximum substitution

rate of 0.0324 (Genner et al., 2007, 2010b) and 0.057

(Koblmüller et al., 2009) per site per million years,

respectively.

Past population size trajectories and time to the

most recent common ancestory (TMRCA) for A.

compressiceps and A. calvus were inferred by means

of a Bayesian coalescent approach (Bayesian skyline

tree prior; Drummond et al., 2005) as implemented in

BEAST 1.8.0 (Drummond & Rambaut, 2007). We

employed the model of molecular evolution selected

by the Bayesian information criterion (BIC) in

jModelTest 0.1 (Posada, 2008), assuming a strict

molecular clock and the same two substitution rates as

above. Two independent MCMC runs of ten million

generations each were conducted, sampling every

1000th step with a burn-in of the first 10% of sampled

generations. Verification of effective sample sizes

(ESS[200 for all parameters), trace of MCMC runs

and visualization of past demographic changes by

means of Bayesian skyline plots (BSPs) were done in

Tracer 1.6 (Rambaut et al., 2013).

Results

Phylogenetic structure of Altolamprologus

In total, 77 hayplotypes were detected in 150 samples;

12 were exclusive to A. calvus, 62 to A. compressiceps,

1 to A. sp. ‘‘shell’’ and 2 haplotypes were shared

betweenA. calvus andA. compressiceps. The statistical

parsimony network and the BI tree revealed two

peculiar features of the phylogenetic relationships

among mitochondrial control region haplotypes of

Altolamprologus, which had to be explored before

enquiring into the phylogeography ofAltolamprologus

(Fig. 2). First, A. compressiceps from northern Lake

Tanganyika (including Congolese and Tanzanian

localities) grouped in a distinct clade that is highly

divergent from the remaining Altolamprologus sam-

ples (7.1% net divergence based on uncorrected

p-distances). Second, A. calvus haplotypes did not

form a distinct cluster, but were shared with or closely

related to A. compressiceps haplotypes.

ND2 and nuclear DNA sequence data were used to

investigate the phylogenetic relationship between the

two Altolampologus species and between the two

clades of A. compressiceps in relation to other species

in the ossified group of Lamprologini. Consistent with

the mitochondrial control region data, there was no

statistical support for monophyly of either A. com-

pressiceps or A. calvus with respect to each other

(Fig. 3). These results suggest that the two species

diverged only recently. Indeed, divergence between

the two specieswas dated to 67–142KYA in ‘isolation-

with-migration’ and pure isolation models (Table 1).

Comparable divergence time estimates were obtained

from models with and without gene flow between

species, regardless of whether all A. compressiceps

samples except for the divergent northern clade were

included in the analyses or only samples from the

southwestern region in which both species occur.

When gene flow was included in the model, it was

estimated to occur at very low rates (Table 2).

The position of the northern A. compressiceps clade

differed between mitochondrial and nuclear trees

(Fig. 3). In the ND2 tree, Altolamprologus excepting

the northern samples formed a well-supported (PP

1.00) clade that clustered with L. callipterus, Lam-

prologus ocellatus and N. fasciatus (PP 0.97). The

northern A. compressiceps branched off basal to this

group, but this sister group relationship was only

weakly supported. In contrast, the nucDNA tree

included the northern A. compressiceps into a well-

supported monophyletic Altolamprologus clade. The

discrepancy between mtDNA and nucDNA sequence

relationships can be explained by ancient interspecific

introgression into the northern A. compressiceps (see

‘‘Discussion’’ section).

Phylogeographic structure

Except for the divergent clade of northern samples,

there was little structure in the control region haplo-

type network, and the BI tree identified only few well-
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supported clades (Fig. 2). A fair number of haplotypes

detected in samples from southern Lake Tanganyika,

including those shared between A. compressiceps and

A. calvus, belonged to an unresolved central cluster

from which several geographically restricted clades

derived, including two separate southeastern, two
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Fig. 2 Phylogenetic relationships among Altolamprologus

haplotypes based on a 348 bp long segment of the mitochondrial

control region.A Statistical parsimony network. Each haplotype

has a number (see Supplementary Table 1) and is represented by

a circle, the diameter of which correlates with the number of

individuals sharing the same haplotype. Small bars indicate the

number of mutations between haplotypes. B Bayesian inference

(BI) tree. Numbers in bold denote haplotype ID, numbers in

parentheses refer to sample sizes and numbers above branches

indicate posterior probabilities (PP) of the respective nodes

(only PP[ 0.7 are shown). Geographic clusters PP[ 0.7 are

indicated by different colours (both in the network and in the BI

tree)
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Fig. 3 Phylogenetic placement of aberrant northern A. com-

pressiceps within the ‘‘ossified group’’ of lamprologines.

A Bayesian inference tree based on 1,047 bp of the mitochon-

drial ND2 gene. B Bayesian inference tree based on a

concatenated data set of four nuclear genes (ITS, 1,306 bp;

LSU, 676 bp; RAG1 intron 2, 928 bp; RAG1 exon 3, 828 bp).

Nodal support in form of posterior probabilities (PP) is shown

above the branches (only PP[ 0.7 are shown). Aberrant

northern A. compressiceps are indicated by bold lettering

Table 1 IMa2 maximum likelihood estimates for divergence

time (years ago) between A. compressiceps and A. calvus based

on minimum and maximum substitution rates of 3.24 and 5.7%

per site per MY, respectively (Koblmüller et al., 2009; Genner

et al., 2010b)

Population 0 versus population 1 3.24%/MY 5.7%/MY

A. compressiceps versus A. calvus 141,954 (87,241–237,166) 80,736 (49,618–134,887)

A. compressiceps versus A. calvus—no migration 116,968 (77,332–167,372) 66,525 (43,982–95,192)

A. compressiceps (southwest) versus A. calvus 117,830 (46,313–303,512) 67,015 (26,340–172,621)

A. compressiceps (southwest) versus A. calvus—no migration 117,830 (59,238–187,622) 67,015 (33,691–106,709)

Values in parentheses represent the interval of the 95% highest posterior density (HPD)

Table 2 IMa2 maximum likelihood estimates of the parame-

ters for divergence time (t), the effective population sizes of the

ancestral (q2) and the daughter populations (q0, q1), and

migration rates (m0[ 1, m1[ 0). Values in parentheses

represent the interval of the 95% highest posterior density

(HPD). Only the parameters for the longest runs per dataset are

shown

Population 0 versus population 1 t q0 q1 q2 m0[ 1 m1[ 0

A. compressiceps versus A. calvus 1.648

(1.013–2.752)

163.3

(107.6–253.3)

32.9

(14.6–71.00)

16.4

(3.8–44.9)

0.0985

(0–0.3195)

0.0005

(0–0.5845)

A. compressiceps versus A.

calvus—no migration

1.357

(0.898–1.942)

189.8

(131.6–279.4)

41.9

(20.6–89.6)

22.4

(7.8–53.6)

NA NA

A. compressiceps (southwest)

versus A. calvus

1.367

(0.528–3.523)

59.9

(21.2–325.7)

29.3

(11.6–69.8)

7.4

(0–45.2)

0.0005

(0–0.8185)

0.0005

(0–0.8175)

A. compressiceps (southwest)

versus A. calvus—no migration

1.367

(0.688–2.178)

77.3

(31.4–249.8)

37.1

(17.3–83.0)

10.65

(1.7–40.4)

NA NA
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separate central Tanzanian and a well-supported

central Congolese clade. A genetic landscape shape

interpolation analysis (Fig. 4) corroborated the

impression of only weak phylogeographic structure

given by the phylogenetic reconstructions. In A.

compressiceps (excepting the northern clade), ele-

vated genetic differentiation was inferred only

between the central Congolese coast (Kalemie,

Magogoro, Murega) and the remaining locations. In

A. calvus, whose restricted distribution range offers

less opportunity for geographic structuring, elevated

differentiation was indicated across the Lufubu river

estuary (between Kasaba and Chaitika), which

imposes a major dispersal barrier to rock-dwelling

cichlids (Sefc et al., unpublished). Our single sample

of an Altolamprologus ecotype inhabiting gastropod

shell beds, A. sp. ‘‘shell’’ from Sumbu, had a private

haplotype that clustered with Altolamprologus spp.

from the same geographical region.

Katete (2)

Kalambo Lodge (9)

Nakaku (7)

Kapembwa (2)
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Kalambo (1)
Kapere (4)

Kasanga (2)
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Nvuna island (1)

Kerenge island (1)

Mpimbwe (9)

N of Mkombe (3)

Isanga (3)

Wonzye (9)
Sondwa (1)

Mbita Island (4)
Kasakalawe (10)

Burundi

D.R.Congo

Zambia

Tanzania

N of Mabilibili (2)

Kalela (3)

Magogoro (2)

Murega (2)

Kalemie (1)

Kibwe (1)

S of Isonga (3)

S of Karema (3)

Kekese (4)
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Chimba (14)
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Nundo (2)

Chisiki (2)

Kikoti (1)

Sumbu (4)

Burundi

D.R.Congo

Zambia

Tanzania

A B

Fig. 4 Results of the genetic landscape shape interpolation

analysis (the degree of shading reflects genetic distance: dark,

large pairwise distance; light, low pairwise distance). Grid size

was set to 0.04 9 0.04 latitude and longitude degrees,

respectively, and a distance weighting parameter a = 0.5 was

used. A Genetic landscape for A. compressiceps excluding the

aberrant northern haplogroup. B Genetic landscape for A.

calvus. Numbers in parentheses refer to sample size
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Demographic history

With many different closely related low-frequency

haplotypes detected in the two species, high haplotype

diversity (A. compressiceps excepting the northern

clade, Hd = 0.976; A. calvus, Hd = 0.847) contrasted

with only moderate nucleotide diversity (A. compres-

siceps excepting the northern clade, p = 0.01679; A.

calvus, p = 0.01033). BSP analysis estimated the

TMRCA of Altolamprologus (northern A. compressi-

ceps haplotypes excluded) between 292 and 512 KYA

(95% HPDs: 160–448 and 282–784 with substitution

rates of 0.0324 and 0.057 per site per million years,

respectively; Genner et al., 2007, 2010b; Koblmüller

et al., 2009). The TMRCA of the northern A.

compressiceps sequences was dated to 210–370

KYA (respective 95% HPDs: 94–343, 165–603).

Despite the small sample size of the northern clade

(N = 11), ESS[20,000 for the TMRCA parameter

suggests that the parameter estimates have converged.

Reconstructions of population size changes through

time in A. compressiceps (northern clade excluded)

and A. calvus indicated recent population growth in

both species during the last 20–35 KY predated by a

period of stable population sizes (Fig. 5). A more

ancient period of population expansion in A compres-

siceps ended about 70–125 KYA.

Discussion

Shallow divergence and weak phylogeographic

structure

A previous population genetic study in A. compressi-

ceps detected low but significant nuclear genetic

differentiation on a small geographic scale at the

southern end of Lake Tanganyika (FST = 0.01–0.02 at

microsatellite loci with mean He = 0.80; Spreitzer

et al., 2012). In rock-dwelling cichlids, dispersal is

often restricted by habitat barriers such as sandy

beaches (Rico & Turner, 2002; Sefc et al., 2007, 2016;

Koblmüller et al., 2011) and fish remain confined

within their native rock patch. Because populations are

isolated from each other, different genetic lineages can

persist and diverge within species. However, periods

of population isolation were interrupted by secondary

contact due to displacements during lake level fluctu-

ations (McGlue et al., 2008), which left signatures of

introgression among distinct lineages (Verheyen et al.,

0.001

0.01

0.1

1

0 50 100 150

fN
e
*
µ

100 200 2501500 50

Fig. 5 Bayesian skyline plot (BSP) reconstruction of past

population size trajectories assuming substitution rates of

3.24–5.7% per site per MY (Koblmüller et al., 2009; Genner

et al., 2010b). Blue and red refer to the A. compressiceps (but

excluding the aberrant northern haplogroup) and A. calvus

groups, respectively. Thick lines denote median estimates, thin

lines indicate 95% HPD intervals. The y-axis represents the

population size parameter (female effective population size, fNe,

times the mutation rate, l)
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1996; Rüber et al., 1999, 2001; Duftner et al., 2007;

Egger et al., 2007). Extrapolating from other steno-

topic rock-dwellers, we predicted that the phylogeo-

graphic structure of Altolamprologus spp. would be

characterized by deep intraspecific divergence, geo-

graphic clusters and introgression between distinct

lineages. Opposite to our expectations, recent ances-

try and only weak phylogeographic structure in the

two Altolamprologus species rather corresponded

with observations in mobile cichlid species less

dependent on rocky substrate (Nevado et al., 2009)

and revealed a contradiction between large-scale

genetic cohesion and small-scale genetic differenti-

ation. Altolamprologus spp. occur at lower densities

than many other rock-dwelling cichlids (Sturmbauer

et al., 2008; Takeuchi et al., 2010; personal obser-

vations). Genetic drift in the small populations can

therefore lead to significant differentiation within

relatively short periods of time despite occasional

gene flow. Observations of juvenile A. compressi-

ceps (of the common rock-dwelling type) in the large

shell beds that aggregate on the sandy lake bottom

(SK, pers. obs.) suggest that Altolamprologus may

bridge the gaps between rocky patches with the help

of these structures, and are therefore not as curtailed

in their dispersal as are many other rock specialists.

In the long run, the exploitation of such dispersal

opportunities as well as periodic secondary contact

during lake level fluctuations will transport haplo-

types across long geographic distances. The small

overall population size of Altolamprologus may then

contribute to accelerated lineage sorting and frequent

replacements of original haplotypes.

The picture of genetic connectivity was inter-

rupted by a highly divergent haplotype lineage

restricted to the northern part of the lake. Appar-

ently, the Malagarazi estuary (between Masaka and

Kibwe) impedes gene flow between this distinct

northern clade and more southern populations along

the eastern shore. The comparatively sparse sam-

pling along the west coast does not allow for

pinpointing a similar phylogeographic break on the

Congolese side. The high divergence of this lineage

from other Altolamprologus spp. haplotypes can be

explained by its heterospecific origin (see below) and

does not necessarily reflect longstanding isolation.

However, the northern A. compressiceps clearly

represent another geographically defined clade

within the species.

Ancient interspecific introgression into northern A.

compressiceps

Considering the comprehensive taxon coverage of

‘ossified group’—lamprologines for phylogenetic

analyses based on mitochondrial and nuclear DNA

sequences, the disparate nuclear and mitochondrial

phylogenetic placements of the northern A. compres-

siceps in relation to other Lamprologini (Fig. 3)

suggest ancient mitochondrial introgression from a

now extinct species and subsequent replacement of the

original mitogenome throughout the very northern

part of Lake Tanganyika. Alternatively, incomplete

lineage sorting could underlie the mitochondrial non-

monophyly of Altolamprologus, but nuclear mono-

phyly of the genus Altolamprologus and the substan-

tial length of the branches separating the involved

species and clades make this unlikely (McCracken &

Sorenson, 2005). Mitochondrial replacement in iso-

lated populations and even in entire species is being

inferred in an increasing number of taxa (e.g. Nevado

et al., 2011; Tang et al., 2012; Melo-Ferreira et al.,

2014; Good et al., 2015), including lamprologines

(Schelly et al., 2006; Nevado et al., 2009). Lampro-

logine species can produce interspecific offspring for

long periods of time following their divergence

(Koblmüller et al., 2007b; Sturmbauer et al., 2010),

which may explain the frequency of interspecific

introgressions detected in this group. When small

population size contributes to rapid sorting of lineages,

as in A. compressiceps, mitochondrial replacement by

the introgressed lineage is not an altogether unlikely

outcome (Leonard et al., 2007; Ray et al., 2007).

Recently diverged species with similar

demographic histories

The two nominal species of Altolamprologus differ in

morphometric characters such as relative body depth,

head length and head shape (Fig. 1), and—when

sympatric—also in colour pattern (Fig. 1). Despite

these pronounced differences, their divergence was

dated to only 67–142 KYA. Such recent speciation is

unusual for Lake Tanganyika cichlids, in which

species typically represent reciprocally monophyletic

lineages separated by substantial genetic distances

(Koblmüller et al., 2004, 2005, 2007c, 2010; Duftner

et al., 2005), except when subject to interspecific

introgression (e.g. Rüber et al., 2001; Koblmüller
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et al., 2007b; Sturmbauer et al., 2010; Nevado et al.,

2011). Divergence between the two Altolamprologus

species was inferred to have proceeded with little if

any gene flow (Table 2), which attributes their poly-

phyletic relationship mainly to incomplete lineage

sorting. The structure of the haplotype network

suggests that A. calvus evolved from A. compressiceps

in southern Lake Tanganyika, where both species are

found today. However, a sympatric speciation sce-

nario is challenged by the ecological similarity of the

two species (Konings, 1998; Muschick et al., 2012),

which rather suggests that divergence was initiated in

geographic separation, and the two species came into

secondary contact only later due to distribution range

shifts in the wake of drastic lake level fluctuations

(McGlue et al., 2008).

Reconstructions of past population size changes

reveal clear signatures of congruent recent population

growth in both species, which can be expected given

their similar ecology and habitat preferences. Simul-

taneous expansions have also been inferred in other

rock-dwelling cichlids from Lake Tanganyika (Kobl-

müller et al., 2011; Nevado et al., 2013; Winkelmann

et al., 2016; Sefc et al., 2016) and Lake Malawi

(Genner & Turner, 2015; Husemann et al., 2015),

suggesting synchronization by an external trigger,

such as habitat expansion during a lake level rise after

a major drought period. Throughout their history, both

Lake Tanganyika and Lake Malawi experienced

numerous severe lake level fluctuations with drops

of several hundred metres below the current level,

which drastically altered the distribution and extent of

littoral habitat types (e.g. McGlue et al., 2008; Lyons

et al., 2015). In Lake Tanganyika, severe lake level

drops down to 435 below the present level associated

with the megadrought events at 75–135 KYA affected

the distributions of littoral cichlid communities (Co-

hen et al., 2007; McGlue et al., 2008). Smaller

fluctuations in the more recent past, especially the

lake level drop of *260 m during the last glacial

maximum (*20 KYA), also had a profound impact on

the current genetic structure of rock-dwelling cichlid

species (Cohen et al., 2007; Scholz et al., 2007;

McGlue et al., 2008). We have previously noted

difficulties in aligning molecular datings of population

divergence and growth with the geological datings of

lake level fluctuations (Koblmüller et al., 2011; Sefc

et al., 2016); in particular, the age of recent demo-

graphic events may be overestimated due to the

potential time dependency of the molecular clock (Ho

et al., 2007) in combination with comparatively

ancient calibration points (Koblmüller et al., 2009)

and large confidence intervals around substitution

rates inferred from recent events (Genner et al.,

2010b). In this light, although the reconstructed dates

do not match exactly, divergence between A. com-

pressiceps and A. calvus and the first wave of

population expansion in A. compressiceps may be

connected with lake level fluctuations during the

megadroughts, and the more recent population size

expansions in A. compressiceps and A. calvus may be

associated with fluctuations during the last glacial

maximum. To tackle the issue of time dependency of

the molecular clock for inferring recent events,

estimating substitution rates using alternative meth-

ods, such as an expansion dating approach (e.g.

Crandall et al., 2012; Koblmüller et al., 2015b;

Hoareau, 2016), rather than the typically employed

divergence dating might yield more reliable estimates.

Because of their often high degrees of stenotopy and

hence sensitivity towards increase and decrease of

available habitats in the wake of lake fluctuations and

the increasingly precise estimates of time and extent of

these fluctuations in both Lakes Tanganyika and

Malawi (McGlue et al., 2008; Lyons et al., 2015),

the rock-dwelling cichlid fishes of the East African

Great Lakes Tanganyika and Malawi should represent

ideal model systems to establish a recent clock for

cichlid fishes based on an expansion dating approach.

Conclusions

In numerous studies of lacustrine cichlids, the species’

ecological specialization predicts population genetic

differentiation on small geographic scales. The present

study shows that population fragmentation and small-

scale differentiation do not necessarily translate into

distinct lake-wide structure. The discrepancy between

population genetic and phylogeographic structures

may arise from the different time scales relevant for

the evolution of either. In particular, population

differentiation—i.e. significant differences in allele

and haplotype frequencies between populations—can

evolve despite low gene flow within relatively short

periods of time. Over longer periods of time, however,

even low levels of gene flow can mediate genetic

connectivity across substantial geographic distances.
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